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Adiabatic RF pulses play an important role in spin inversion
due to their robust behavior in the presence of inhomogeneous RF
fields. These pulses are characterized by the trajectory swept by
the tip of the B vector and the rate of motion along it. In this
paper, we describe a method by which optimized modulation func-
tions can be constructed to render insensitivity to B; inhomogene-
ity over a predetermined B; range and over a wide band of frequen-
cies. This is accomplished by requiring that the optimized pulse
fulfill the adiabatic condition over this range of B; inhomogeneity
and over the desired frequency band for the complete duration of
the pulse. A trajectory similar to the well-known sech/tanh adia-
batic pulse, i.e., a half-ellipse, is used. The optimization process
improves the slice profile by optimizing the rate of motion along
this trajectory. The optimized pulse can be tailored to the specific
design requirements; in particular, the transition sharpness may be
traded off against the inverted bandwidth. Two design examples,
including experimental results, demonstrate the superiority of the
optimized pulses over the conventional sech/tanh pulse: in the
first example, a large frequency band is to be inverted using a
weak RF amplitude in a short time. In the second example, a
pulse with a very sharp transition is required. © 1997 Academic Press

INTRODUCTION

Adiabatic fast passage has long been used to invert a
selected band of spins. These pulses retain their robustness
even when subjected to nonuniform RF amplitude. The pulse
is defined by its instantaneous amplitude wi(t) = yB(t)
and frequency w(t) and is most conveniently studied in the
frequency frame which is a frame of reference rotating at
the instantaneous frequency of the pulse (1). It operates by
causing the magnetization vector m to follow the effective
field vector w,
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we(wp, 1) = vw ()X + Aw(wo, t)2, [1]

where Aw(wy, t) = w(t) — wy is the resonance offset and
wo the Larmor frequency of the spin we are inspecting. v is
the RF field inhomogeneity factor with a nominal value of
1. The adiabatic theorem (2) asserts that the magnetization
vector m remains spin-locked to w. provided that the rate
of precession of m about w, is much faster than the angular
velocity of the motion of w.. Mathematicaly this is ex-
pressed by the adiabatic condition (3),

IM'(wo, t) > 1, [2]
where I' is the adiabatic parameter,
2 2 2y\3/2
F(WO, t) _ ”we(wO! t)” _ (U W1 + Aw ) [3]

C0(wo, )] vl Awws — wiAw|

andtan § = Aw/w,. Inversion is obtained when the effective
field moves the longitudinal magnetization M, from the +z
to the —z axis over a wide band of Larmor frequencies.

In the frame of reference of the dice center, i.e., for wq
= w,, We may plot the route traced by thetip of the w, vector.
This graph of w4 (t) vs Aw(we, t) is called the trajectory of
the adiabatic pulse. An adiabatic pulse is characterized by
its trgjectory and the rate of motion of w. upon it. When the
adiabatic condition is strictly fulfilled, this trajectory is a
good prediction of the route traced by the magnetization
vector since the latter is “‘locked’” to w.. However, at off
resonances where the adiabatic condition collapses, such as
in the transition region, the trgjectory does not portray the
path followed by the magnetization. Three classic examples
of frequency modulation functions that have been analyzed
(expressed here as amplitude/frequency modulation func-
tions) include the sech/tanh (4), sin/cos (5), and const/
tan (3).
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A numerical optimization method called NOM (numeri-
cally optimized modulation) was introduced by Ugurbil et
al. (6) and further generalized by Town and Rosenfeld (7)
and Skinner and Robitaille (8). According to these methods
thetimevariablet is parameterized by afunction n(t). Using
Eq. [3], the purposeisto find the function n(t) which results
in a pulse with an adiabatic parameter which is equal to a
desired value vy, during the entire duration of the pulse and
over agiven range of inhomogeneity (vmin = v = Vmax) - ThiS
may be done numerically (6) and in certain cases an analytic
solution can be obtained (7, 8). The optimization, which
turns out to use even less RF power than the original pulse,
is effective only at the Larmor frequency of the dlice center
(on resonance) and is, therefore, inadequate for inversion of
alarge frequency bandwidth. Johnson et al. (9) subsequently
extended this method to account for off-resonance condi-
tions.

Several researchers (10—13) have recently suggested an
analytic solution to this problem by equating I" to a constant,
I'(wo, t) = yo, for Aw = 0. It was assumed that the adiabatic
parameter achievesits smallest and hence most critical value
at the resonance Larmor frequency, where w, = w(t).

In this paper NOM is generalized to include wide-band
RF pulses which are suitable for MR imaging as well as
spectroscopic applications. We require that the minimal
value of T" within the inverted band be equal to the constant
vo. As is shown, this value is not obtained at the resonance
isochromat w, = w(t) but rather at some other Larmor fre-
guency. The method presented enables the pulse designer to
determine the trade-off of various pulse parameters in order
to meet the design requirements. In particular, the transition
width can be traded off against the inverted bandwidth—a
matter not allowed by the conventional sech/tanh pulse. An
efficient design algorithm is discussed and design examples
are given to illustrate the effectiveness of the method in two
extreme situations: (i) when a narrow transition bandwidth
is required and (ii) when a wide band of frequenciesis to
be inverted in a short time. In both cases the superiority
of the proposed method is demonstrated with respect to a
conventional sech/tanh adiabatic pulse with similar parame-
ters.

METHOD

For the sake of simplicity we limit our discussion to a
specific trajectory, in particular the half-ellipse trgjectory of
the sin/cos and sech/tanh pulses. The modulation functions,
after being parameterized by a function n(t) of time, are
given by

m™ T

wr(t) = A cos(n(t)), ne[— . E]

w(t) = we — Bsin(n(t)), [4]
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where A = wimax = YBimax 1S the nomina peak amplitude
of the pulse. B = SW/2, where SW istheinverted bandwidth
and w. is the Larmor frequency of the slice center. The
parameterizing function n varies between — /2 and 7 /2 for
an inversion pulse. Substituting this into Eq. [3] the adia-
batic parameter in then given by

F(Qo, t)
_ (v®A%cos®(n(1)) + (B sin(n(t)) + Q0)*)**
|7 (H)vA(B + Qosin(n(t)))]

where Qy = wy — w, is the off-resonance frequency relative
to the dlice center.

Herein we are concerned with adiabatic pulses which in-
vert M, over awide band of Larmor frequencies. Before the
pulse is applied the magnetization is assumed to be at its
equilibrium value M, in the z direction. For convenience,
we work in units where M, = 1. Three regions can be recog-
nized (14): (i) the in-slice region, [y < SW/2 — co,
where M, is inverted; (ii) the out-of-dlice region, |Q,| >
SW/2 + ¢, where the equilibrium magnetization retains its
initial value; and (iii) the transition region of width 2¢; in
between, SW/2 — ¢, < |Qy| < SW/2 + ¢y, where the final
magnetization varies between those two states. The adiabatic
condition [2] must be fulfilled for al Larmor frequencies
in the first two regions, but by definition, breaks down in
the transition region in between (14, 15).

The adiabatic parameter I' was seen in Eq. [5] to be a
function of the off-resonance frequency €,. The on-reso-
nance results of Refs. (6—8) can be generalized to include
wide-band adiabatic pulses by requiring that the pulse fulfill
the adiabatic condition, viz.

1H(Qoa t) = Yo,

. [5]

[6]

during the entire pulse durationt € [ O, T], for off resonances
Qo within the in-slice and out-of-dlice regions, and for a
specified range of inhomogeneity vyin = v = vma. The pa
rameter y, determines the lowest allowed value of the adia-
batic parameter T". The shaded area in Fig. 1 defines the
support region, designated Q, upon which we require condi-
tion [6] to be fulfilled. The value of the parameter ¢, affects
the transition width of the resulting pulse. To aclose approxi-
mation, 2¢, gives the transition width when v, is set to its
lowest value that till renders inversion.

Rearranging Egs. [5] and [6] and assuming that 7 is an
ascending function of t we can write

| =

(v2AZ%cos?(n) + (B sin(n) + )%)3?
Yo [vA(B + Qosin(n))|

=Lt Q0. v). [7]
Yo
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FIG. 1. Support region for inversion pulse upon which the adiabatic
condition T'(€, t) = vy, is required to be fulfilled. The dlice width is SW
and the parameter ¢, affects the transition width of the resulting pulse. The
range of RF inhomogeneity iS vmn = v = Uma SO that the maximal peak
RF amplitude varies between Av;, and Avpg.

For a given value of 5, the function f achieves a certain
minimal value within the support area Q. We denote this
minimal value of f(n; Qo, v) by f,.(n). If 7(t) at each n is
set equal to this minimal value, then the condition required
by Eq. [ 7] will be fulfilled upon the entire domain Q. Equat-
ing 7 (t) with f,(n) defines the time derivative of n(t) asa
function of n itself. This can be solved for t, by

t(n) = vo f_ﬂ . dn'[fn(n’)]™, n € [— % , g] .

[8]

The total duration of the inversion pulse is then

/2
T= Yof
—7l2

Summarizing, the algorithm for designing wide-band
pulsesis:

dn’[fm(n")] .

1. We are given the desired inverted slice width B =
SW/2 and the range of RF amplitudes [ Avmin, Avma] . The
transition width parameter ¢, is chosen; as afirst approxima-
tion, half the desired transition width may be used. These
parameters define the support area Q.

2. Integrate the differential equation [8]. The result is
the function t(n). Here f,(n) denotes the minima vaue
that f (n; Qo, v) (Eg. [7]) obtains upon the support area Q
for a given vaue of 7.

3. Invert t(n) to obtain n(t).

4. The pulse modulation functions are determined by
Eq. [4].

Several comments are in order. In Step 2 the differentia
eguation [ 8] is integrated using numerical techniques (16)
which require computation of the value of the integrand
fn(n) for agiven value of 5. It is simplest to calculate f,,—
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the minimum of f (n; Q, v) within the support area Q—by
a direct search method or some other numerical algorithm.
In generad, this is difficult to perform analytically because
of the irregular shape of the domain Q. In the next section
we describe an efficient algorithm for calculating f.,.

The value of vy, in Eqg. [8] determines the time scale of
the pulse. In addition, it represents the minimal value of the
adiabatic parameter within Q (cf. Eqg. [6]). For simplicity,
Step 2 can be performed for an arbitrary value of this param-
eter, say yo = 1. The fina pulse should then be tested by
simulation for different time scales (representing different
values of y,). The shortest pulse that can still render satisfac-
tory inversion is finaly selected. From our experience, the
lowest value of vy, is yo = 4.

The parameter ¢, controls the transition width. Reducing
this parameter decreases the transition width; the pulse dura-
tion, however, will then increase. In practice, this value
should be adjusted by experimentation, until both the transi-
tion and the pulse duration are satisfactory. Note that the
trade-off between pulse parameters, which is characteristic
of the method described here, is not possible in a conven-
tional sech/tanh pulse where the transition width isinversely
proportional to the dlice duration and is solely determined
by it (17). For a given pulse duration, if the slice width SW
is made too large, the pulse will cease to invert. This point
is exemplified under Results below.

Computation of f

Recall that f,(n) is the minima value that f(n; Qo, v)
achieves within the support area Q shown in Fig. 1. The
simplest solution adopted by several authors (10—13) is to
use an approximation by which the minimal valueis obtained
at resonance where w, = w(t). It is now shown that the
actual expression is more complicated, and by using the
exact result we ensure that adiabaticity is indeed maintained
across the entire inverted band. An efficient search method
for numerically computing the minimal value throughout the
irregularly shaped support Q is discussed.

For given values of n and v we can solve

21 (n; Qo, v)

—= =0, 9

0% [9]
for Q. The solution is given by

Qg'(n, v)
= —Bsin(n)
| ~3Boos*(y) + VOB2cos*(n) + 2v2AZsin?(2n)
4sin(n) '

[10]
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o' is, then, the off resonance at which f is minima for
given values of n and v. We are not, however, concerned
with the entire range of off resonances; only the in-slice and
out-of-dlice regions are of interest to us. Therefore, if Qg
fals within the transition region (i.e, SW/2 — ¢, <
Q5| < SW/2 + ¢) it should be substituted by the lowest
value that f achieves at one of the two adjacent boundaries.
For example, if SW/2 — ¢o < QF < SW/2 + ¢, then the
following two values should be computed:

fy
2

f(n; SW/2 — G, v)
f(n; SW/2 + ¢, v).

If f, < f,then QF = SW/2 — ¢, is used, and vice versa, if
f, < f, then QF = SW/2 + ¢, is used.

Using this method we can calculate Q25'(n, v), which is
the off resonance at which fis minimal for given values of
n and v. In order to find f,(n), al that is left to do is to
calculate the minimal value of f (n; Qg'(n, v), v) as afunc-
tion of v. For example, we may divide the range of vy, =
Umax INtO N sections with midpoints v;. For each v;,
Q4'(n, v) iscomputed as described above and then the value
of f(n; 7, v;) iscalculated. f, is, thus, the lowest value of
f(n; Qo'(n,vi), v) over al v, . Rather than conducting such
adirect search over v; , more efficient one-dimensional mini-
mum-finding algorithms can be employed (16). Note that
the method used must require only evaluations of the func-
tion to be minimized (i.e, f) and not evaluations of its
derivatives, because the derivative 9 f(n; Q8(n, v), v)/dv
is not necessarily defined.

V=

RESULTS

We now demonstrate the performance of the optimized
pulse via two examples which examine two extreme cases:
(i) alarge bandwidth is to be inverted in a short time using
low RF amplitude and (ii) a narrow transition is sought. In
both cases the optimized pulse is compared with a conven-
tional sech/tanh adiabatic pulse which is known to be an
efficient and robust pulse.

The pulses described below were implemented on a Pres-
tige 2T system (Elscint Ltd., Haifa, Israel), in order to pro-
vide experimental validation of the results obtained by simu-
lation. The experimental setup was described in detail in
Ref. (14).

Example 1: Large Inversion Band

The objective of our first example is to design a pulse
which is capable of inverting alarge bandwidth using aweak
RF amplitude in a short time. It is shown that this can be
achieved by sacrificing the transition width. We are trying
to invert abandwidth of SW/27 = 8 kHz with an RF ampli-
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FIG. 2. Optimization of a pulse which is intended to invert a large
bandwidth (8 kHz) using a weak RF amplitude (0.8 kHz) in a short time
(9 ms). Pulse modulation functions (a) amplitude and (b) frequency, and
(c) simulated slice profile of optimized pulse (solid line) and a conventional
sech/tanh pulse (dashed line) with similar parameters. (d) Experimental
result (solid line) compared with smulated result (dashed line) for opti-
mized pulse. Parameters used for optimization: 2B/2r = 9 kHz, transition
width parameter c,/2n = 1.2 kHz, range of RF inhomogeneity 0.8 kHz =
vA/2r = 6 kHz. Minimal value of adiabatic parameter y, = 2.95 which
yields a pulse duration of 9 ms. Parameters for sech/tanh adiabatic pulse:
SW/2r = 8 kHz, yB; ma/27 = 0.8 kHz.

tudeaslow as A/ 27 = yB; na/ 27 = 0.8 kHz. The computa-
tion of f,, was performed with a transition width parameter
of co/2r = 1.2 kHz and over arange of RF inhomogeneity
0.8 kHz = vA/ 27 = 6 kHz (these parameters determine the
shape of the support area Q shown in Fig 1). We note that
a dlice width parameter 2B/27 = 9 kHz (instead of 8 kHz)
was used because the final result with this value corresponds
better to the desired inverted bandwidth. Simulations were
performed on the result of the optimization procedure to
determine the lowest possible value of the adiabatic parame-
ter yo which is capable of rendering satisfactory inversion;
the value chosen was vy, = 2.95 which yields a pulse of
duration 9 ms. The amplitude and frequency modulation
functions of the optimized RF pulse are plotted in Figs. 2a
and 2b. Figure 2c displays the resulting computer-simul ated
dlice profile. For comparison, the dashed line in the figure
represents a conventional sech/tanh pulse with the same
parameters (i.e., duration, slice width, and peak amplitude).
It can be seen that the sech/tanh pulse does not achieve
full inversion. Its transition, however, is sharper than the
optimized pulse. Experimental validation of this pulse is
depicted in Fig. 2d.

The adiabatic behavior of the pulse is demonstrated by
studying its sensitivity to inhomogeneity of the RF field.
Thisisdone by plotting contours of thelongitudinal magneti-
zation at the end of the pulse at each off-resonance frequency
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Stability in the presence of RF field inhomogeneity: contours of the longitudinal magnetization at the end of the pulse at different RF

amplitudes. (a) sech/tanh pulse and (b) optimized pulse (corresponding to the pulse in Fig. 2). The horizontal dotted lines designate the threshold RF

amplitude above which inversion is ensured.

in the presence of field imperfections. In Fig. 3 these con-
tours are plotted as a function of the maximal value of the
applied RF field for the optimized pulse and the correspond-
ing sech/tanh adiabatic pulse. For both pulses the slice pro-
file isretained over alarge variation in RF amplitude. How-
ever, full magnetization inversion is obtained for the new
pulse at a much lower B, amplitude.

The adiabatic behavior of the pulse can further be demon-
strated by examining its performance in two extreme situa-
tions. In the first, the adiabaticity is affected by varying the
B, amplitude of the pulse. Figure 4 plots the z component
of the final magnetization at the slice center (on resonance)
as a function of the maximal B, amplitude applied during

Pulse adiabaticity
1.0 [ T T T
i Pulse duration = 9 ms 1
05 .
% 0.0 _ \\\ sech/tanh i
= [
0.5F .
i Opt pulse ~ .
-1.0t ‘ ST
0.0 1.0 1.5 2.0

vB,/2m [KHz]

FIG. 4. The adiabatic performance of the optimized pulse of Fig. 2
compared with that of a sech/tanh pulse using the same parameters. The
M, component of the final magnetization at the slice center is plotted for
various maximal RF amplitudes with a pulse duration of 9 ms. Inverted
bandwidth is SW/27r = 8 kHz.

the pulse. It is seen that full inversion (defined herein as M,
= —0.95) is achieved when the maximal pulse amplitude is
0.8 kHz for the optimized pulse versus 1.5 kHz for the sech/
tanh pulse. These conditions correspond to the horizonta
dotted lines in Fig. 3.

In the second extreme case, the efficiency of the pulse is
tested by examining its ability to invert the magnetization
at short durations. Figure 5 plots the final M, at the dice
center for various pulse durations using the maximal B, am-
plitude of 0.8 kHz. It can be seen that the optimized pulse
achieves full inversion (on resonance) for pulse durations
as low as 9 ms whereas the sech/tanh pulse requires more
than 30 ms to accomplish inversion.

Pulse efficiency
1.07 ‘ ‘ T
¥B,/2® = 0.8 KHz

Mz(0)

o

30

0 10
Pulse duration [ms]

20 40

FIG. 5. Pulse efficiency: The M, component of the final magnetization
at the dice center is plotted for various pulse durations. The optimized
pulse of Fig. 2 is compared with a sech/tanh pulse using the same parame-
ters. Inverted bandwidth is SW/2r = 8 kHz and the maximal RF amplitude
iS yBimx/ 27 = 0.8 kHz.
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FIG. 6. Support region for a pulse which performs fat suppression by
inversion. The adiabatic condition T'(2, t) = 7, is required to be fulfilled
upon the shaded area. The parameter ¢, affects the transition width of the
resulting pulse which is desired to be kept to a minimum. The range of RF
inhomogeneity iS vmin = v = Umx SO that the maximal peak RF amplitude
varies between Avmin and Avyax.

Example 2: Sharp Transition

In our second example we attempt to design a pulse for
performing fat suppression by inversion. The purpose is to
invert the longitudinal magnetization for spins below a cer-
tain Larmor frequency while leaving it untouched for spins
above that frequency. The main goal isto keep the transition
region as narrow as possible because of the small chemical
shift between the signals (~3.5 ppm). This process is de-
scribed in detail in Ref. (17).

In this technique only a single transition of the inversion
pulse is utilized. Moreover, the final magnetization is only
significant upon a certain finite frequency band on either
side of the transition. This bandwidth should contain the
spectral region where substantial signal is emitted by the
water and lipid protons. The symmetric bi-sided form of the
support area Q shown in Fig. 1 may be replaced by the less
restrictive single-sided shape Q' depicted in Fig. 6. Here the
transition region of width 2¢, is enclosed by two frequency
intervals: the inverted band on the left and the out-of-slice
region, where the magnetization is left untouched, on the
right.

The parameters used for the optimization were a band-
width of 2B/27 = SW/2x = 2 kHz, transition width param-
eter of co/2r = 50 Hz, and range of RF inhomogeneity
1 kHz = vA/27 = 4 kHz. The bandwidth on both sides of
the transition (cf. Fig. 6) is 0.5 kHz. The lowest adiabatic
parameter chosen was y, = 5.35 which yields a pulse of
duration 20 ms.

The amplitude and frequency modulation functions of the
optimized RF pulse are plotted in Figs. 7a and 7b. Figure
7c displays the resulting (computer-simulated) slice profile.
The dashed line in the figure represents a corresponding
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FIG. 7. Optimization of a pulse which is designed to perform fat sup-
pression by inversion. Pulse modulation functions (a) amplitude and (b)
frequency and (c) simulated dlice profile of optimized pulse (solid line)
and a conventional sech/tanh pulse (dashed line) with similar parameters.
Parameters used for optimization: 2B/2r = 2 kHz, transition width parame-
ter co/2m = 50 Hz, range of RF inhomogeneity 1 kHz = vA/2r = 4 kHz.
The interval of interest on both sides of the transition (cf. Fig. 6) is 0.5
kHz. Minimal value of adiabatic parameter y, = 5.35 which yields a pulse
duration of 20 ms. Parameters for sech/tanh adiabatic pulse: SW/27 = 2
kHz, yB; nex/2m = 1 kHz.

sech/tanh pulse. The asymmetric nature of both the modula
tion functions and the frequency response is clearly visible.
A single transition has, indeed, been sharpened at the ex-
pense of the other transition which is immaterial to our pur-
pose. The extent of this improvement is exhibited in Fig. 8
which compares the optimized transition to that of the sech/
tanh pulse; this figure is a detail of Fig. 7c. Comparing the
transition bandwidth of both pulses in the range where M,
switches between =0.95 (horizontal dotted lines in the fig-
ure), it is concluded that the transition has been reduced by
a factor of 77 Hz/195 Hz ~ 0.4.

(a) Simulation results (b) Experimental results
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FIG. 8. Transition region of the optimized pulse of Fig. 7 (solid line)
compared with that of an equivalent sech/tanh pulse (dashed line). (a)
Simulated results and (b) experimental results.
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FIG. 9. Stahility in the presence of RF field inhomogeneity: contours of the longitudinal magnetization at the end of the pulse at different RF
amplitudes. (a) sech/tanh pulse and (b) optimized pulse (corresponding to the pulse in Fig. 7).

Figure 9 displays stability plots of both pulses. It can be
seen that the optimized pulse is very robust as its sharpness
is maintained over a large range of amplitudes.

DISCUSSION

Adiabatic pulses are capable of providing robust and reli-
able magneti zation inversion which grants them an important
role asinversion pulsesin many MRI applications. Inhomo-
geneity of the RF field occurs frequently in magnetic reso-
nance imaging due to magnetic loading of the patient’ s body
(18—-20). RF cails contribute to the field inhomogeneity
both due to constraints imposed by coil design (21) and in
the case of the RF field of a surface coil which declines as
the distance from the coil center increases. Therefore, it is
essential to design pulses which are insensitive to RF field
inhomogeneity.

As the static magnetic field increases, the RF power dissi-
pation in the patient’s body increases dramatically (22).
This has the effect of reducing the maximum available B,
amplitude because much more RF power is required. In
addition, maximal RF amplitudeis alimitation of the equip-
ment being used, in particular, the RF power amplifier.

In many applications the duration of the adiabatic pulse
is a significant consideration. This duration is limited due
to T, decay so that the largest pulse duration must be much
less than the shortest T, that is being examined. Another
constraint is imposed by the pulse sequence being used. For
example, ininversion-recovery sequencesashorter inversion
pulse would enable one to image more slices simultaneously.
Consequently, it is important to design efficient adiabatic
pulses that invert M, at the shortest possible time.

Adiabatic pulses are capable of alleviating the above-men-

tioned difficulties by enabling one to design pulses which
are insensitive to RF field inhomogeneity, and can invert M,
over a large frequency bandwidth using low B; levels a a
short duration. These qualities derive from two important
properties of adiabatic pulses: First, an important advantage
of such pulses over conventional 180° pulses is that the
inversion of the longitudinal magnetization (and the dlice
profile) is retained for any RF field strength above a given
threshold of B, amplitude. Therefore, arobust magnetization
inversion is ensured even if the magnetic field is very inho-
mogeneous provided that the weakest field exceeds this
threshold amplitude. This property is demonstrated both by
Fig. 4 and by the stability plotsin Figs. 3 (i.e, inversion is
ensured above the horizontal dotted line) and 9.

Second, adiabatic pulses are capable of inverting a large
frequency bandwidth using asmall RF amplitude. Theinver-
sion can be achieved provided that the pulse duration islong
enough so that the adiabatic condition isfulfilled. In contrast,
for conventional 180° pulses, the maximum inverted band-
width isless than twice the maximum available B, amplitude
(infrequency units). This point isillustrated in Fig. 5 where
it is seen that inversion is ensured above a certain duration.

Because of their advantages adiabatic pulses produce a
robust and reliable magnetization inversion and are, there-
fore, extensively used in a wide variety of imaging applica-
tions, for example, inversion-recovery sequences, MP-
RAGE, MR angiography, and *‘black-blood’’ imaging.

The method described herein starts off by defining the
support area which determines the ranges of both off reso-
nances and RF inhomogeneity factors where the pulse is
required to perform well. The time spent sweeping each
point along the half-ellipse trgjectory is then determined so
that the adiabatic condition T'(Q, t) = v, is fulfilled with
respect to every point in the support area. This is achieved
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by first finding the point within the support area for which
the adiabatic parameter T" is the lowest, and then forcing the
equality I = -y, for this point. Finally, the precise value of
vo 1S determined by simulation; the lowest value that can
till render satisfactory inversion is selected.

The lowest value of the adiabatic parameter, y,, must be
determined experimentally. It was mentioned above that this
value is approximately y, =~ 4. In our examples we obtained
alower value (2.95) when trying to invert alarge bandwidth
and a higher value (5.35) when sharpening the transition.
This trend was confirmed by other experiments we per-
formed as well.

As mentioned above, the parameter ¢, controls the tran-
sition width. Reducing this parameter decreases the transi-
tion width; the pulse duration, however, will then increase.
In practice, this value should be adjusted by experimenta-
tion until both the transition width and the pulse duration
are satisfactory. It is interesting to note that to a close
approximation, 2¢, gives the transition width when v, is
set to the lowest value that still enables inversion. Thisis
confirmed by both our examples (cf. Figs. 2c and 8).

The conventional sech/tanh adiabatic pulse and the op-
timized pulse both trace the identical half-ellipse trajec-
tory and do so at the same duration. The sweep rate, how-
ever, is different: it was adjusted in the optimized pulse
to achieve the goal of larger inversion band in the first
example and a sharper transition in the second. How is
this accomplished? In the sech/tanh pulse the transition
width is determined exclusively by the pulse duration
(17, 23). This effect is demonstrated in Fig. 2c which
shows that the sech/tanh pulse maintains its sharp transi-
tion though it could not reach an inversion. The optimiza-
tion process allows us to trade off the transition sharpness
against the inverted bandwidth; one may be sacrificed in
favor of the other. Thisis precisely what happened in both
our examples. In the first example the transition width was
sacrificed in order to obtain alarger inverted bandwidth. In
the second example the transition is narrow, although a
smaller frequency band is inverted.

It isinteresting to note that for a given set of parameters
we could, in our experiments, find a unique value of ¢,
which yields a pulse almost identical to the sech/tanh
adiabatic pulse. This value reflects the specific trade-off
between transition sharpness and inverted bandwidth
which distinguishes the sech/tanh pulse. It also serves to
explain the robust behavior of the sech/tanh pulse. In the
Appendix, an approach based on the adiabatic condition,
similar to the one described herein, is used to explain the
adiabaticity of the sech/tanh pulse.

In medical imaging applications, especialy in high-field
systems, the specific absorption rate (SAR) is an important
specification of an RF pulse. The SAR measures the amount
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of RF energy dissipated by the patient’s body per unit time.
The RF energy of a pulse with duration T is proportional to

Fuie* | (vBA(D)70

The SAR induced by the pulse depends on the number of
times per second that this pulse is employed. For Example
1 we compare the energy of the optimized pulse with param-
eters as shown in Fig. 2 (T = 9 ms, yB; ma/ 27 = 0.8 kHz)
with a sech/tanh pulse of equal duration, but with a higher
peak RF amplitude (yBima/27 = 1.5 kHz) which ensures
inversion (cf. horizontal dotted lines in Fig. 3). We then
obtain

Enew pulse — 93%

sech/tanh

Example 1:

We conclude that in order to invert adiabaticaly an 8-kHz
bandwidth in 9 ms, not only does the optimized pulse allow
us to use only 53% of the maximal RF amplitude, but it
performs the task while dissipating less energy than a sech/
tanh pulse.

As for Example 2, the energy ratio is compared for the
same parameters that are displayed in Fig. 7,

EnaN pulse _ 37%’

-sech/tanh

Example 2:

which exhibits an even larger decrease in energy.

In this paper we used the conventional half-ellipse trajec-
tory throughout. It is straightforward to apply the optimiza-
tion technique described herein to other types of trajectories.
In particular, we tested a parametric family of trajectories
which we call sin®/cos® (cf. Eq. [4]):

wi(t) = Acos*(n(t)), ne [— g , ﬂ

w(t) = we — B sign(n(t))|sin(n(t))[". [11]
The parameter o determines the convexity of the trgjectory:
a = 1yields the regular half-ellipse trajectory, whereas for
lower values of « one obtains a more bulging tragjectory. We
performed optimizations with the parameters of Example 2
where we tested the sharpness of the transition as a function
of the convexity parameter «. The results show that for «
= 0.465 the transition width can be reduced by an additiona
4% with respect to the origina results of Example 2 (ac-
quired for o = 1). The reduced transition was accompanied
by a SAR increase of 17%. Note that a similar inflated
trajectory was proposed by usin a previous publication (14)
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where it was derived analytically. There, too, a similar in-
crease in SAR was obtained.

CONCLUSIONS

In this paper a method is described by which optimized
modulation functions can be constructed to render insensitiv-
ity to B, inhomogeneity over a predetermined B, range and
over a wide band of frequencies. This is accomplished by
requiring that the optimized pulse fulfill the adiabatic condi-
tion over the range of B, inhomogeneity and over the desired
frequency band for the complete duration of the pulse. The
dlice profile is improved by optimizing the rate of motion
along the given half-ellipse trgectory.

It was shown that the optimized pulse can be tailored to
the specific design requirements; in particular, the transition
sharpness may be traded off against the inverted bandwidth.
In both cases the superiority of the new pulse with respect
to a conventional sech/tanh adiabatic pulse was established.
This follows from the fact that the sech/tanh pulse exhibits
aparticular relationship between its transition sharpness and
its inverted bandwidth; the optimization, on the other hand,
allows one to meet the specific requirements at hand.

APPENDIX

Derivation of the sech/tanh Pulse
from the Adiabatic Condition

It is shown that, using a process similar to the one de-
scribed in this paper, we can analytically derive expressions
for the sech/tanh pulse. We begin with Eq. [ 7] (forv = 1):

1 (A%cos?(n) + (B sin(n) + )?)*?
& |A(B + Qosin(n))|

n(t) =
[Al]

Assuming that the minimum value of # with respect to
is obtained inside the inverted band, i.e., || = B, then
with regard to the denominator of Eq. [Al] it follows that
| B + Qosin(n)| = 2B. A more conservative inequality for
7 is, therefore,

1 (A’cos’(n) + (B sin(n) + Q0)%)*?
Yo 2AB '

n(t) =
[AZ]

It is easy to see that the minimal value of the right-hand
side of Eq. [A2] is obtained for

Q6'(n) = —Bsin(n). [A3]
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The physical interpretation of Eq. [A3] is that the minimal
value of the adiabatic parameter is obtained at resonance
where wy, = w(t) (cf. Eq. [4]). It is dso illuminating to
compare Eq. [ A3] with Eq. [10] . These two equations differ
by the rightmost term in Eq. [10] which is comparatively
small in most practical cases. In particular, for negative (pos-
itive) values of n the actua Qg (in Eq. [10]) is lower
(higher) than the synthesizer frequency.

Substituting Eq. [ A3] into Eqg. [ A2] and requiring equal-
ity yields the following equation for 7:

dp 1 A?
— = = —cos(n).
& 7. B (n)

This ssmple equation can be anaytically integrated as was
done in Eq. [8] and an expression for t(n) obtained. In-
verting the latter we get

n(t) = 2 arctan<tanh<%i2i>> .

B 7o

Substituting this expression into Eqg. [4] and using some
well-known trigonometric identities we obtain

wi(t) = A sech(pt)
w(t) = w. — B tanh(pt),

where

which are precisely the equations for the sech/tanh adiabatic
pulse.

Summarizing, the sech/tanh pulse is a particular case of
our method of optimization if we assume that the minimal
value of fisobtained at the Larmor frequency of the synthe-
sizer. On the one hand, when this assumption is fulfilled,
the sech/tanh is optimal; on the other hand, when it breaks
down, the optimization method presented herein yields better
results. Our design examples demonstrate this point for two
extreme cases where the approximation fails.
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